Abstract
ABSTRACTThe iterative learning control (ILC) is investigated for a class of nonlinear systems with measurement noises where the output is subject to sensor saturation. An ILC algorithm is introduced based on the measured output information rather than the actual output signal. A decreasing sequence is also incorporated into the learning algorithm to ensure a stable convergence under stochastic noises. It is strictly proved with the help of the stochastic approximation technique that the input sequence converges to the desired input almost surely along the iteration axis. Illustrative simulations are exploited to verify the effectiveness of the proposed algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.