Abstract
In order to efficiently use the ever growing amounts of structured data on the web, methods and tools for quality-aware data integration should be devised. In this paper we propose an approach to automatically learn the conflict resolution strategies, which is a crucial step in large-scale data integration. The approach is implemented as an extension of the Sieve data quality assessment and fusion framework. We apply and evaluate our approach on the use case of fusing data from 10 language editions of DBpedia, a large-scale structured knowledge base extracted from Wikipedia. We also propose a method for extracting rich provenance metadata for each DBpedia fact, which is later used in data fusion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.