Abstract

Standard video encoders developed for conventional narrow field-of-view video are widely applied to 360° video as well, with reasonable results. However, while this approach commits arbitrarily to a projection of the spherical frames, we observe that some orientations of a 360° video, once projected, are more compressible than others. We introduce an approach to predict the sphere rotation that will yield the maximal compression rate. Given video clips in their original encoding, a convolutional neural network learns the association between a clip's visual content and its compressibility at different rotations of a cubemap projection. Given a novel video, our learning-based approach efficiently infers the most compressible direction in one shot, without repeated rendering and compression of the source video. We validate our idea on thousands of video clips and multiple popular video codecs. The results show that this untapped dimension of 360° compression has substantial potential-"good" rotations are typically 8-18 percent more compressible than bad ones, and our learning approach can predict them reliably 78 percent of the time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.