Abstract

Competitive activation mechanisms introduce competitive or inhibitory interactions between units through functional mechanisms instead of inhibitory connections. A unit receives input from another unit proportional to its own activation as well as to that of the sending unit and the connection strength between the two. This, plus the finite output from any unit, induces competition among units that receive activation from the same unit. Here we present a backpropagation learning rule for use with competitive activation mechanisms and show empirically how this learning rule successfully trains networks to perform an exclusive-OR task and a diagnosis task. In particular, networks trained by this learning rule are found to outperform standard backpropagation networks with novel patterns in the diagnosis problem. The ability of competitive networks to bring about context-sensitive competition and cooperation among a set of units proved to be crucial in diagnosing multiple disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.