Abstract

Statistical-relational learning combines logical syntax with probabilistic methods. Markov Logic Networks (MLNs) are a prominent model class that generalizes both first-order logic and undirected graphical models (Markov networks). The qualitative component of an MLN is a set of clauses and the quantitative component is a set of clause weights. Generative MLNs model the joint distribution of relationships and attributes. A state-of-the-art structure learning method is the moralization approach: learn a set of directed Horn clauses, then convert them to conjunctions to obtain MLN clauses. The directed clauses are learned using Bayes net methods. The moralization approach takes advantage of the high-quality inference algorithms for MLNs and their ability to handle cyclic dependencies. A weakness of moralization is that it leads to an unnecessarily large number of clauses. In this paper we show that using decision trees to represent conditional probabilities in the Bayes net is an effective remedy that leads to much more compact MLN structures. In experiments on benchmark datasets, the decision trees reduce the number of clauses in the moralized MLN by a factor of 5---25, depending on the dataset. The accuracy of predictions is competitive with the models obtained by standard moralization, and in many cases superior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.