Abstract

This paper is concerned with bridging the gap between requirements and distributed systems. Requirements are defined as basic message sequence charts (MSCs) specifying positive and negative scenarios. Communicating finite-state machines (CFMs), i.e., finite automata that communicate via FIFO buffers, act as system realizations. The key contribution is a generalization of Angluin's learning algorithm for synthesizing CFMs from MSCs. This approach is exact-the resulting CFM precisely accepts the set of positive scenarios and rejects all negative ones-and yields fully asynchronous implementations. The paper investigates for which classes of MSC languages CFMs can be learned, presents an optimization technique for learning partial orders, and provides substantial empirical evidence indicating the practical feasibility of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.