Abstract

Research in learning from demonstration has focused on transferring movements from humans to robots. However, a need is arising for robots that do not just replicate the task on their own, but that also interact with humans in a safe and natural way to accomplish tasks cooperatively. Robots with variable impedance capabilities opens the door to new challenging applications, where the learning algorithms must be extended by encapsulating force and vision information. In this paper we propose a framework to transfer impedance-based behaviors to a torque-controlled robot by kinesthetic teaching. The proposed model encodes the examples as a task-parameterized statistical dynamical system, where the robot impedance is shaped by estimating virtual stiffness matrices from the set of demonstrations. A collaborative assembly task is used as testbed. The results show that the model can be used to modify the robot impedance along task execution to facilitate the collaboration, by triggering stiff and compliant behaviors in an on-line manner to adapt to the user's actions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.