Abstract

We present ELEM2, a machine learning system that induces classification rules from a set of data based on a heuristic search over a hypothesis space. ELEM2 is distinguished from other rule induction systems in three aspects. First, it uses a new heuristtic function to guide the heuristic search. The function reflects the degree of relevance of an attribute-value pair to a target concept and leads to selection of the most relevant pairs for formulating rules. Second, ELEM2 handles inconsistent training examples by defining an unlearnable region of a concept based on the probability distribution of that concept in the training data. The unlearnable region is used as a stopping criterion for the concept learning process, which resolves conflicts without removing inconsistent examples. Third, ELEM2 employs a new rule quality measure in its post-pruning process to prevent rules from overfitting the data. The rule quality formula measures the extent to which a rule can discriminate between the positive and negative examples of a class. We describe features of ELEM2, its rule induction algorithm and its classification procedure. We report experimental results that compare ELEM2 with C4.5 and CN2 on a number of datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call