Abstract
We study learning dynamics in a prototypical representative-agent forward-looking model in which agents’ beliefs are updated using linear learning algorithms. We show that learning in this model can generate long memory endogenously, without any persistence in the exogenous shocks, depending on the weights agents place on past observations when they update their beliefs, and on the magnitude of the feedback from expectations to the endogenous variable. This is distinctly different from the case of rational expectations, where the memory of the endogenous variable is determined exogenously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.