Abstract

Kernels are key components of pattern recognition mechanisms. We propose a universal kernel optimality criterion, which is independent of the classifier to be used. Defining data polarization as a process by which points of different classes are driven to geometrically opposite locations in a confined domain, we propose selecting the kernel parameter values that polarize the data in the associated feature space. Conversely, the kernel is said to be polarized by the data. Kernel polarization gives rise to an unconstrained optimization problem. We show that complete kernel polarization yields consistent classification by kernel-sum classifiers. Tested on real-life data, polarized kernels demonstrate a clear advantage over the Euclidean distance in proximity classifiers. Embedded in a support vectors classifier, kernel polarization is found to yield about the same performance as exhaustive parameter search.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.