Abstract

Modern exact algorithms for structure learning in Bayesian networks first compute an exact local score of every candidate parent set, and then find a network structure by combinatorial optimization so as to maximize the global score. This approach assumes that each local score can be computed fast, which can be problematic when the scarcity of the data calls for structured local models or when there are both continuous and discrete variables, for these cases have lacked efficient-to-compute local scores. To address this challenge, we introduce a local score that is based on a class of classification and regression trees. We show that under modest restrictions on the possible branchings in the tree structure, it is feasible to find a structure that maximizes a Bayes score in a range of moderate-size problem instances. In particular, this enables global optimization of the Bayesian network structure, including the local structure. In addition, we introduce a related model class that extends ordinary conditional probability tables to continuous variables by employing an adaptive discretization approach. The two model classes are compared empirically by learning Bayesian networks from benchmark real-world and synthetic data sets. We discuss the relative strengths of the model classes in terms of their structure learning capability, predictive performance, and running time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call