Abstract

Bayesian networks have been successfully applied to various tasks for probabilistic reasoning and causal modeling. One major challenge in the application of Bayesian networks is to learn the Bayesian network structures from data. In this paper, we take advantage of the idea of curriculum learning and learn Bayesian network structures by stages. At each stage a subnet is learned over a selected subset of the random variables. The selected subset grows with stages and eventually includes all the variables. We show that in our approach each target subnet is closer to the target Bayesian network than any of its predecessors. The experimental results show that our algorithm outperformed the state-of-the-art heuristic approach in learning Bayesian network structures under several different evaluation metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.