Abstract

In this paper, we propose a new framework to optimally tone map the high dynamic range (HDR) content for image matching under drastic illumination variations. Since tone mapping operators (TMO) have traditionally been used for displaying HDR scenes, their design is suboptimal when used for computer vision tasks, such as image matching. We address this suboptimality by proposing a two-step framework, consisting of: first, a luminance-invariant guidance model based on a support vector regressor (SVR) to optimally adapt the tone mapping function for image matching; and second, an energy maximization model to generate appropriate training samples for learning the SVR. At each step, we collectively address both stages of keypoint detection and descriptor extraction in the feature matching framework. By locally altering the intrinsic characteristics of the tone mapping function, the learned guidance model facilitates the extraction of local invariant features in the presence of illumination variations. We demonstrate that the proposed TMO significantly outperforms perceptually driven state-of-the-art TMOs on a dataset of HDR scenes characterized by challenging lighting variations, such as day/night transitions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.