Abstract

For dynamical systems with uncertainty, robust controllers can be designed by assuming that the uncertainty is bounded. The less we know about the uncertainty in the system, the more conservative the bound must be, which in turn may lead to reduced control performance. If measurements of the uncertain term are available, this data may be used to reduce the uncertainty in order to make bounds as tight as possible. In this paper, we consider a linear system with a sector-bounded uncertainty. We develop a model predictive control algorithm to control the system, and use a weighted Bayesian linear regression model to learn the least conservative sector condition using measurements collected in closed-loop. The resulting robust model predictive control algorithm therefore reduces the conservativeness of the controller, and provides probabilistic guarantees of asymptotic stability and constraint satisfaction. The efficacy of the proposed method is shown in simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.