Abstract
We propose a learning-based model for multifunctional elbow exoskeleton control, i.e., assist- and resist-as-needed (AAN and RAN). The model consists of online iterative learning and impedance adaptation mechanisms for predictive and variable compliant joint control. The model was implemented on a lightweight (0.425 kg) and portable elbow exoskeleton (i.e., POW-EXO) worn by three subjects, respectively. The implementation relies only on internal pose (e.g., joint position) feedback, rather than physical compliant mechanisms (e.g., springs) and external sensors (e.g., electromyography (EMG) or force) typically required by conventional exoskeletons and controllers. The proposed model provides a novel technique to achieve multifunctional exoskeleton control with minimal mechatronics and sensing. Interestingly, its RAN control and POW-EXO as a quantification means, may reveal interactive (mechanical) impedance variance and invariance in human motor control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.