Abstract

AbstractA major shortfall of vision‐based inspection solutions is the lack of scale information, required to resolve inspection regions to a physical scale. To address this challenge, a learning‐based scale estimation technique is proposed. The underlying assumption is that the surface texture of structures, captured in images, contains enough information to estimate scale for each corresponding image (e.g., pixel/mm). This permits the training of a regression model to establish the relationship between surface textures, captured in images, and scales. A convolutional neural network is trained to extract scale‐related features from textures captured in images. Then, the trained model can be exploited to estimate scales for all images that are captured from a structure's surfaces with similar textures. The capability of the proposed technique is demonstrated using data collected from surface textures of three different structures. An average scale estimation error, from images of each structure, is less than 15%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.