Abstract
The optimal control of a water reservoir system represents a challenging problem, due to uncertain hydrologic inputs and the need to adapt to changing environment and varying control objectives. In this work, we propose a real-time learning-based control strategy based on a hierarchical predictive control architecture. Two control loops are implemented: the inner loop is aimed to make the overall dynamics similar to an assigned linear model through data-driven control design, then the outer economic model-predictive controller compensates for model mismatches, enforces suitable constraints, and boosts the tracking performance. The effectiveness of the proposed approach is illustrated on an accurate simulator of the Hoa Binh reservoir in Vietnam. Results show that the proposed approach outperforms stochastic dynamic programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.