Abstract

This paper presents a data-driven measurement model for extended object tracking (EOT) with automotive radar. Specifically, the spatial distribution of automotive radar measurements is modeled as a hierarchical truncated Gaussian (HTG) with structural geometry parameters that can be learned from the training data. The HTG measurement model provides an adequate resemblance to the spatial distribution of real-world automotive radar measurements. Moreover, large-scale radar datasets can be leveraged to learn the geometry-related model parameters and offload the computationally demanding model parameter estimation from the state update step. The learned HTG measurement model is further incorporated into a random matrix based EOT approach with two (multi-sensor) measurement updates: one is based on a factorized Gaussian inverse-Wishart density representation and the other is based on a Rao-Blackwellized particle density representation. The effectiveness of the proposed approaches is verified on both synthetic data and real-world nuScenes dataset over 300 trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.