Abstract
This paper presents a predictive controller for a grid-interactive multi-zone building where the temperature dynamics are learned via Gaussian Process (GP) regression. We investigate the development of a learning-based predictive control with two main objectives: (i) continuously learn the temperature dynamics of the building based on data; and, (ii) use the learned dynamics to solve a multi-objective predictive control problem to guarantee occupants’ comfort and energy efficiency during normal conditions and demand response events. We leverage the probabilistic non-parametric properties of GPs to estimate the (unknown) non-linear temperature dynamics of the building and to incorporate the uncertainty of those predictions in a multi-objective optimization problem. The GP-based predictive control is solved via a zero-order primal-dual projected-gradient algorithm. We evaluate numerically the performance of the proposed controller using a five-zone commercial building.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.