Abstract
To avoid complex constraints of the traditional nonlinear method for tethered space robot (TSR) deployment, a data-driven optimal control framework with an improve deep learning based Koopman operator is proposed in this work. In consideration of nonlinearity of tethered space robot dynamics, its finite dimensional global linear representation called lifted linear system is derived with the Koopman operator theory. A deep learning scheme is adopted to find the embedding functions associate with Koopman operator. And an auxiliary neural network is developed to encode the nonlinear control term of finite dimensional lifted system. Then a controllability constraint is considered for learning a controllable lifted linear system. Besides two loss functions that relate to reconstruction and prediction ability of lifted linear system are designed for training the deep neural network. With the learned lifted linear dynamics, Linear Quadratic Regulator (LQR) is applied to derive the optimal control policy for the tethered space robot deployment. Finally, simulation results verify the effectiveness of proposed framework and show that it could deploy tethered space robot more quickly with less swing of in-plane angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.