Abstract

In this paper, we investigate a learning-based complex field recovery technique of an object from its digital hologram. Most of the previous learning-based approaches first propagate the captured hologram to the object plane and then suppress the DC and conjugate noise in the reconstruction. To the contrary, the proposed technique utilizes a deep learning network to extract the object complex field in the hologram plane directly, making it robust to the object depth variations and well suited for three-dimensional objects. Unlike the previous approaches which concentrate on transparent biological samples having near-uniform amplitude, the proposed technique is applied to more general objects which have large amplitude variations. The proposed technique is verified by numerical simulations and optical experiments, demonstrating its feasibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call