Abstract

Biped humanoid robots that operate in real-world environments need to be able to physically recognize different floors to best adapt their gait. In this work, we describe the preparation of a dataset of contact forces obtained with eight force tactile sensors for determining the underlying surface of a walking robot. The data is acquired for four floors with different coefficient of friction, and different robot gaits and speeds. To classify the different floors, the data is used as input for two common computational intelligence techniques (CITs): Artificial neural network (ANN) and extreme learning machine (ELM). After optimizing the parameters for both CITs, a good mapping between inputs and targets is achieved with classification accuracies of about 99%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.