Abstract

Performing link adaptation in a multiantenna and multiuser system is challenging because of the coupling between precoding, user selection, spatial mode selection and use of limited feedback about the channel. The problem is exacerbated by the difficulty of selecting the proper modulation and coding scheme when using orthogonal frequency division multiplexing (OFDM). This paper presents a data-driven approach to link adaptation for multiuser multiple input mulitple output (MIMO) OFDM systems. A machine learning classifier is used to select the modulation and coding scheme, taking as input the SNR values in the different subcarriers and spatial streams. A new approximation is developed to estimate the unknown interuser interference due to the use of limited feedback. This approximation allows to obtain SNR information at the transmitter with a minimum communication overhead. A greedy algorithm is used to perform spatial mode and user selection with affordable complexity, without resorting to an exhaustive search. The proposed adaptation is studied in the context of the IEEE 802.11ac standard, and is shown to schedule users and adjust the transmission parameters to the channel conditions as well as to the rate of the feedback channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.