Abstract

In this paper, we address the problem of model-free optimal output regulation of discrete-time systems that aims at achieving asymptotic tracking and disturbance rejection without the knowledge of the system parameters. Insights from reinforcement learning and adaptive dynamic programming are used to solve this problem. An interesting discovery is that the model-free discrete-time output regulation differs from the continuous-time counterpart in terms of the persistent excitation condition required to ensure the uniqueness and convergence of the policy iteration. In this work, we carefully establish the persistent excitation condition to ensure the uniqueness and convergence properties of the policy iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.