Abstract

It is widely accepted that the formation of long-term memory (LTM) requires neuronal gene expression, protein synthesis and the remodeling of synaptic contacts. From mollusk to mammals, the cAMP/PKA/CREB signaling pathway has been shown to play a pivotal role in the establishment of LTM. More recently, the MAPK cascade has been also involved in memory processing. Here, we provide evidence for the participation of hippocampal PKA/CREB and MAPK/Elk-1 pathways, via activation of NMDA receptors, in memory formation of a one-trial avoidance learning in rats. Learning of this task is associated with an activation of p44 and p42 MAPKs, CREB and Elk-1, along with an increase in the levels of the catalytic subunit of PKA and Fos protein in nuclear-enriched hippocampal fractions. These changes were blocked by the immediate posttraining intra-hippocampal infusion of APV, a selective blocker of glutamate NMDA receptors, which renders the animals amnesic for this task. Moreover, no changes were found in control-shocked animals. Thus, inhibitory avoidance training in the rat is associated with an increase in the protein product of an IEG, c- fos, which occurs concomitantly with the activation of nuclear MAPK, CREB and Elk-1. NMDA receptors appear to be a necessary upstream step for the activation of these intracellular cascades during learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.