Abstract

We introduce an approach to image-based road detection that exploits the availability of unannotated training images to learn an appearance model. Our approach allows us to remove the standard assumption that the lower part of the input image belongs to the road surface, which does not always hold and often yields strongly biased appearance models. Instead, we exploit this assumption in the training images, which yields a much more general appearance model. We then use the learned model to classify the pixels of an input image as road or background without requiring any assumptions about this image. Our experimental evaluation shows the benefits of our approach over existing methods in challenging real-world driving scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.