Abstract

A novel procedure for learning Fuzzy Controllers (FC) is proposed that concerns with energy efficiency issues in distributing electrical energy to heaters in an electrical energy heating system. Energy rationalization together with temperature control can significantly improve energy efficiency, by efficiently controlling electrical heating systems and electrical energy consumption. The novel procedure, which improves the training process, is designed to train the FC, as well as to run the control algorithm and to carry out energy distribution. Firstly, the dynamic thermal performance of different variables is mathematically modelled for each specific building type and climate zone. Secondly, an exploratory projection pursuit method is used to extract the relevant features. Finally, a supervised dynamic neural network model and identification techniques are applied to FC learning and training. The FC rule-set and parameter-set learning process is a multi-objective problem that minimizes both the indoor temperature error and the energy deficit in the house. The reliability of the proposed procedure is validated for a city in a winter zone in Spain. © 2011 The Author. Published by Oxford University Press. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.