Abstract

Hybrid (i.e., grey-box) models are a powerful and flexible paradigm for predictive science and engineering. Grey-box models use data-driven constructs to incorporate unknown or computationally intractable phenomena into glass-box mechanistic models. The pioneering work of statisticians Kennedy and O’Hagan introduced a new paradigm to quantify epistemic (i.e., model-form) uncertainty. While popular in several engineering disciplines, prior work using Kennedy–O’Hagan hybrid models focuses on prediction with accurate uncertainty estimates. This work demonstrates computational strategies to deploy Bayesian hybrid models for optimization under uncertainty. Specifically, the posterior distributions of Bayesian hybrid models provide a principled uncertainty set for stochastic programming, chance-constrained optimization, or robust optimization. Through two illustrative case studies, we demonstrate the efficacy of hybrid models, composed of a structurally inadequate glass-box model and Gaussian process bias correction term, for decision-making using limited training data. From these case studies, we develop recommended best practices and explore the trade-offs between different hybrid model architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call