Abstract

The aims of the present work were to consider the characteristics of learning and memory from the point of view of a systems approach and to compare this view with the traditional approach. Neuron activity is regarded not as a response to the synaptic influx resulting in excitation but as a means of altering the cell's relationship with its environment, whose "action" is to eliminate discordance between the cell's "needs" and its microenvironment. The neuronal mechanisms of learning and consolidation of memory are regarded not as formation of a stable increase in the efficiency of synaptic transmission in circuits of connected neurons, but as a system genesis event which confers new system specializations on neurons which do not have to be directly connected synaptically. The roles of the processes of selection, reconsolidatory modification of previously formed memories, gene activation, neurogenesis, and apoptosis in systems genesis occurring both in normal and pathological conditions are discussed. Individual development is regarded as a sequence of system genesis events. The systems approach is applied to the phenomenon of long-term potentiation. In conclusion, a scheme including different types and stages of memory formation is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.