Abstract
The use of context can considerably facilitate reasoning by restricting the beliefs reasoned upon to those relevant and providing extra information specific to the context. Despite the use and formalization of context being extensively studied both in AI and ML, context has not been much utilized in agents. This may be because many agents are only applied in a single context, and so these aspects are implicit in their design, or it may be that the need to explicitly encode information about various contexts is onerous. An algorithm to learn the appropriate context along with knowledge relevant to that context gets around these difficulties and opens the way for the exploitation of context in agent design. The algorithm is described and the agents compared with agents that learn and apply knowledge in a generic way within an artificial stock market. The potential for context as a principled manner of closely integrating crisp reasoning and fuzzy learning is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.