Abstract

Strategies based on the extraction of measures from ordinal patterns transformation, such as probability distributions and transition graphs, have reached relevant advancements in distinguishing different time series dynamics. However, the reliability of such measures depends on the appropriate selection of parameters and the need for large time series. In this paper we present a method for the characterization of distinct time series behaviors based on the probability of self-transitions, a measure extracted from their transformation onto ordinal patterns transition graphs. We validate our method by investigating the main characteristics of periodic, random, and chaotic time series. By the application of learning strategies, we precisely classify different randomness levels in time series, reaching 100% in accuracy, and advances in performing the hard task of distinguishing random noises from chaotic time series, correctly distinguishing 96.61% of the cases. Furthermore, we show that this strategy is well suitable to be used by many applications, even for short time series, and does not depend on the selection of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.