Abstract

Sampling-based motion planners (SBMP) are commonly used to generate motion plans by incrementally constructing a search tree through a robot’s configuration space. For high degree-of-freedom systems, sampling is often done in a lower-dimensional space, with a steering function responsible for local planning in the higher-dimensional configuration space. However, for highly-redundant sytems with complex kinematics, this approach is problematic due to the high computational cost of evaluating the steering function, especially in cluttered environments. Therefore, having an efficient, informed sampler becomes critical to online robot operation. In this study, we develop a learning-based approach with policy improvement to compute an optimal sampling distribution for use in SBMPs. Motivated by the challenge of whole-body planning for a 31 degree-of-freedom mobile robot built by the Toyota Research Institute, we combine our learning-based approach with classical graph-search to obtain a constrained sampling distribution. Over multiple learning iterations, the algorithm learns a probability distribution weighting areas of low-cost and high probability of success, which a graph search algorithm then uses to obtain an optimal sampling distribution for the robot. On challenging motion planning tasks for the robot, we observe significant computational speed-up, fewer edge evaluations, and more efficient paths with minimal computational overhead. We show the efficacy of our approach with a number of experiments in whole-body motion planning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.