Abstract

In this paper, we employ techniques of machine learning, exemplified by support vector machines and neural classifiers, to initiate the study of whether artificial intelligence (AI) can “learn” algebraic structures. Using finite groups and finite rings as a concrete playground, we find that questions such as identification of simple groups by “looking” at the Cayley table or correctly matching addition and multiplication tables for finite rings can, at least for structures of small size, be performed by the AI, even after having been trained only on small number of cases. These results are in tandem with recent investigations on whether AI can solve certain classes of problems in algebraic geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.