Abstract

Emotion recognition is challenging due to the emotional gap between emotions and audio–visual features. Motivated by the powerful feature learning ability of deep neural networks, this paper proposes to bridge the emotional gap by using a hybrid deep model, which first produces audio–visual segment features with Convolutional Neural Networks (CNNs) and 3D-CNN, then fuses audio–visual segment features in a Deep Belief Networks (DBNs). The proposed method is trained in two stages. First, CNN and 3D-CNN models pre-trained on corresponding large-scale image and video classification tasks are fine-tuned on emotion recognition tasks to learn audio and visual segment features, respectively. Second, the outputs of CNN and 3D-CNN models are combined into a fusion network built with a DBN model. The fusion network is trained to jointly learn a discriminative audio–visual segment feature representation. After average-pooling segment features learned by DBN to form a fixed-length global video feature, a linear Support Vector Machine is used for video emotion classification. Experimental results on three public audio–visual emotional databases, including the acted RML database, the acted eNTERFACE05 database, and the spontaneous BAUM-1s database, demonstrate the promising performance of the proposed method. To the best of our knowledge, this is an early work fusing audio and visual cues with CNN, 3D-CNN, and DBN for audio–visual emotion recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.