Abstract

Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern state-of-the-art instruments. Devising multidisciplinary and easy-to-use computational experiments enable us to learn how the hydrothermal system responds to un unrest and which fingerprints it may leave in the geophysical signals.

Highlights

  • The concept of “safe and sustainable energy” is seeing a growing interest among the general populations in many countries

  • We presented a multi-parametric numerical model to determine the response of different geophysical signals to the characteristics of the geothermal system and to its dynamic

  • Using a model-based approach, we have demonstrated that detectable geophysical changes may be revealed in association with the resumption of hydrothermal activity at Vulcano Island

Read more

Summary

Introduction

The concept of “safe and sustainable energy” is seeing a growing interest among the general populations in many countries. Temperature, and pore-pressure changes necessarily induce thermal, stress and strain variations, which alter the density distribution and the magnetization of the porous media and are reflected on the ground surface in observable variations in deformation, gravity and magnetic fields. Monitoring these geophysical observables, which are the surface expressions of processes that are not directly accessible, and developing tools for their interpretation are the keys to open up new perspectives in the exploration, exploitation and monitoring of hydrothermal areas

Objectives
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call