Abstract

This paper explores the theoretical and empirical implications of time-varying and unobservable beta. Investors infer factor loadings from the history of returns via the Kalman filter. Due to learning, the history of beta matters. Even though the conditional CAPM holds, standard OLS tests can reject the model if the evolution of investor's expectations is not properly modelled. We use our methodology to explain returns on the twenty-five size and book-to-market sorted portfolios. Our learning version of the conditional CAPM produces pricing errors that are significantly smaller than standard conditional or unconditional CAPM and the model is not rejected by the data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.