Abstract
We present a methodology for learning a taxonomy from a set of text documents that each describes one concept. The taxonomy is obtained by clustering the concept definition documents with a hierarchical approach to the Self-Organizing Map. In this study, we compare three different feature extraction approaches with varying degree of language independence. The feature extraction schemes include fuzzy logic-based feature weighting and selection, statistical keyphrase extraction, and the traditional tf-idf weighting scheme. The experiments are conducted for English, Finnish, and Spanish. The results show that while the rule-based fuzzy logic systems have an advantage in automatic taxonomy learning, taxonomies can also be constructed with tolerable results using statistical methods without domain- or style-specific knowledge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.