Abstract

In this paper we present a novel framework for learning contextual motion model involving multiple objects in far-field surveillance video and apply the learned model to improving the performance of objects tracking and abnormal event detection. We represent trajectory of multiple objects by a 3D graph G in x,y,t, which is augmented by a number of spatio-temporal relations (links) between moving and static objects in the scene (e.g. relation between crosswalk, pedestrian and car). An inhomogeneous Markov model p is defined over G, whose parameters are estimated by MLE method and relations are pursued by a minimax entropy principle (as in texture modeling) [16] so that we can synthesize entirely new video sequences that reproduce the observed statistics from training video. With the learned model, we define the abnormality of a subgraph given its neighborhood by log-likelihood ratio test, which is estimated by importance sampling. The learned model is applied to tracking and abnormal event detection. Our experiments show that the learned model improve tracking performance and detect sophisticated abnormal events like traffic rule violation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.