Abstract

In recent years, there has been rapid development in video anomaly detection (VAD). The previous methods ignored the differences between normal videos and only emphasized learning the commonalities of normal videos. In order to improve the performance of anomaly detection, we delve into the spatial distribution of normal video features and utilize their differences for clustering, leading to more minor reconstruction errors for normal videos and more significant reconstruction errors for abnormal videos. To achieve this goal, we introduce a Multi-Cluster Memory Prototype framework (MCMP) for VAD, which explores the coarse-grained and fine-grained information from video snippet features simultaneously to learn a memory prototype, thereby significantly improving the ability to discriminate abnormal events in complex scenes. First, a video feature clustering method that employs contrastive learning is introduced to group samples sharing similar fine-grained features. Second, the memory mechanism is used to capture the feature distribution of normal samples. Lastly, the Gaussian filter feature transformation method is introduced to make normal and abnormal features more distinguishable. The frame level AUC of MCMP on ShanghaiTech and UCF-Crime benchmark datasets has increased by 1.26% and 0.45% compared to state-of-the-art methods. Our code is publicly available athttps://github.com/WuIkun5658/MCMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.