Abstract

The VC dimension measures the capacity of a learning machine, and a low VC dimension leads to good generalization. While SVMs produce state-of-the-art learning performance, it is well known that the VC dimension of a SVM can be unbounded; despite good results in practice, there is no guarantee of good generalization. In this paper, we show how to learn a hyperplane classifier by minimizing an exact, or \boldmath{$\Theta$} bound on its VC dimension. The proposed approach, termed as the Minimal Complexity Machine (MCM), involves solving a simple linear programming problem. Experimental results show, that on a number of benchmark datasets, the proposed approach learns classifiers with error rates much less than conventional SVMs, while often using fewer support vectors. On many benchmark datasets, the number of support vectors is less than one-tenth the number used by SVMs, indicating that the MCM does indeed learn simpler representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.