Abstract

A session-based recommender system (SBRS) captures users’ evolving behaviors and recommends the next item by profiling users in terms of items in a session. User intent and user preference are two factors affecting his (her) decisions. Specifically, the former narrows the selection scope to some item types, while the latter helps to compare items of the same type. Most SBRSs assume one arbitrary user intent dominates a session when making a recommendation. However, this oversimplifies the reality that a session may involve multiple types of items conforming to different intents. In current SBRSs, items conforming to different user intents have cross-interference in profiling users for whom only one user intent is considered. Explicitly identifying and differentiating items conforming to various user intents can address this issue and model rich contextual information of a session. To this end, we design a framework modeling user intent and preference explicitly, which empowers the two factors to play their distinctive roles. Accordingly, we propose a key-array memory network (KA-MemNN) with a hierarchical intent tree to model coarse-to-fine user intents. The two-layer weighting unit (TLWU) in KA-MemNN detects user intents and generates intent-specific user profiles. Furthermore, the hierarchical semantic component (HSC) integrates multiple sets of intent-specific user profiles along with different user intent distributions to model a multi-intent user profile. The experimental results on real-world datasets demonstrate the superiority of KA-MemNN over selected state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.