Abstract

In response to real-world scenarios, the domain generalization (DG) problem has spurred considerable research in person re-identification (ReID). This challenge arises when the target domain, which is significantly different from the source domains, remains unknown. However, the performance of current DG ReID relies heavily on labor-intensive source domain annotations. Considering the potential of unlabeled data, we investigate unsupervised domain generalization (UDG) in ReID. Our goal is to create a model that can generalize from unlabeled source domains to semantically retrieve images in an unseen target domain. To address this, we propose a new approach that trains a domain-agnostic expert (DaE) for unsupervised domain-generalizable person ReID. This involves independently training multiple experts to account for label space inconsistencies between source domains. At the same time, the DaE captures domain-generalizable information for testing. Our experiments demonstrate the effectiveness of this method for learning generalizable features under the UDG setting. The results demonstrate the superiority of our method over state-of-the-art techniques. We will make our code and models available for public use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.