Abstract

AbstractMotion interpolation technology produces transition motion frames between two discrete movements. It is wildly used in video games, virtual reality and augmented reality. In the fields of computer graphics and animations, our data‐driven method generates transition motions of two arbitrary animations without additional control signals. In this work, we propose a novel carefully designed deep learning framework, named deep motion interpolation network (DMIN), to learn human movement habits from a real dataset and then to perform the interpolation function specific for human motions. It is a data‐driven approach to capture overall rhythm of two given discrete movements and generate natural in‐between motion frames. The sequence‐by‐sequence architecture allows completing all missing frames within single forward inference, which reduces computation time for interpolation. Experiments on human motion datasets show that our network achieves promising interpolation performance. The ablation study demonstrates the effectiveness of the carefully designed DMIN.1

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.