Abstract
Fall prevention is one of the most important components in senior care. We present a technique to augment an assistive walking device with the ability to prevent falls. Given an existing walking device, our method develops a fall predictor and a recovery policy by utilizing the onboard sensors and actuators. The key component of our method is a robust human walking policy that models realistic human gait under a moderate level of perturbations. We use this human walking policy to provide training data for the fall predictor, as well as to teach the recovery policy how to best modify the person’s gait when a fall is imminent. Our evaluation shows that the human walking policy generates walking sequences similar to those reported in biomechanics literature. Our experiments in simulation show that the augmented assistive device can indeed help recover balance from a variety of external perturbations. We also provide a quantitative method to evaluate the design choices for an assistive device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.