Abstract

A 3D scene is more than the geometry and classes of the objects it comprises. An essential aspect beyond object-level perception is the scene context, described as a dense semantic network of interconnected nodes. Scene graphs have become a common representation to encode the semantic richness of images, where nodes in the graph are object entities connected by edges, so-called relationships. Such graphs have been shown to be useful in achieving state-of-the-art performance in image captioning, visual question answering and image generation or editing. While scene graph prediction methods so far focused on images, we propose instead a novel neural network architecture for 3D data, where the aim is to learn to regress semantic graphs from a given 3D scene. With this work, we go beyond object-level perception, by exploring relations between object entities. Our method learns instance embeddings alongside a scene segmentation and is able to predict semantics for object nodes and edges. We leverage 3DSSG, a large scale dataset based on 3RScan that features scene graphs of changing 3D scenes. Finally, we show the effectiveness of graphs as an intermediate representation on a retrieval task.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call