Abstract

Although deep learning has made significant progress on fixed large-scale datasets, it typically encounters challenges regarding improperly detecting unknown/unseen classes in the open-world scenario, over-parametrized, and overfitting small samples. Since biological systems can overcome the above difficulties very well, individuals inherit an innate gene from collective creatures that have evolved over hundreds of millions of years and then learn new skills through few examples. Inspired by this, we propose a practical collective-individual paradigm where an evolution (expandable) network is trained on sequential tasks and then recognize unknown classes in real-world. Moreover, the learngene, i.e., the gene for learning initialization rules of the target model, is proposed to inherit the meta-knowledge from the collective model and reconstruct a lightweight individual model on the target task. Particularly, a novel criterion is proposed to discover learngene in the collective model, according to the gradient information. Finally, the individual model is trained only with few samples on the target learning tasks. We demonstrate the effectiveness of our approach in an extensive empirical study and theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.