Abstract

Modern consumer electronics market dictates the need for small-scale and high-performance cameras. Such designs involve trade-offs between various system parameters. In such trade-offs, Depth Of Field (DOF) is a significant issue very often. We propose a computational imaging-based technique to overcome DOF limitations. Our approach is based on the synergy between a simple phase aperture coding element and a convolutional neural network (CNN). The phase element, designed for DOF extension using color diversity in the imaging system response, causes chromatic variations by creating a different defocus blur for each color channel of the image. The phase-mask is designed such that the CNN model is able to restore from the coded image an all-in-focus image easily. This is achieved by using a joint end-to-end training of both the phase element and the CNN parameters using backpropagation. The proposed approach provides superior performance to other methods in simulations as well as in real-world scenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.