Abstract

In this paper, we propose an approach to learn generic multi-modal mesh surface representations using a novel scheme for fusing texture and geometric data. Our approach defines an inverse mapping between different geometric descriptors computed on the mesh surface or its down-sampled version, and the corresponding 2D texture image of the mesh, allowing the construction of fused geometrically augmented images (FGAI). This new fused modality enables us to learn feature representations from 3D data in a highly efficient manner by simply employing standard CNNs in a transfer-learning mode. The proposed approach is both computationally and memory efficient, preserves intrinsic geometric information and learns highly discriminative feature representations by effectively fusing shape and texture information at data level. The efficacy of our approach is demonstrated for the tasks of facial action unit detection and expression classification. The extensive experiments conducted on the Bosphorus and BU-4DFE datasets show that our method produces a significant boost in the performance when compared to state-of-the-art solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.