Abstract
Objective. Various deep learning methods have recently been used for low dose CT (LDCT) denoising. Aggressive denoising may destroy the edge and fine anatomical structures of CT images. Therefore a key issue in LDCT denoising tasks is the difficulty of balancing noise/artifact suppression and edge/structure preservation. Approach. We proposed an LDCT denoising network based on the encoder-decoder structure, namely the Learnable PM diffusion coefficient and efficient attention network (PMA-Net). First, using the powerful feature modeling capability of partial differential equations, we constructed a multiple learnable edge module to generate precise edge information, incorporating the anisotropic image processing idea of Perona–Malik (PM) model into the neural network. Second, a multiscale reformative coordinate attention module was designed to extract multiscale information. Non-overlapping dilated convolution capturing abundant contextual content was combined with coordinate attention which could embed the spatial location information of important features into the channel attention map. Finally, we imposed additional constraints on the edge information using edge-enhanced multiscale perceptual loss to avoid structure loss and over-smoothing. Main results. Experiments are conducted on simulated and real datasets. The quantitative and qualitative results show that the proposed method has better performance in suppressing noise/artifacts and preserving edges/structures. Significance. This work proposes a novel edge feature extraction method that unfolds partial differential equation into neural networks, which contributes to the interpretability and clinical application value of neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.