Abstract

Empirical mode decomposition (EMD) is a fully data driven method for multiscale decomposing signals into a set of components known as intrinsic mode functions. EMD is based on lower and upper envelopes of the signal in an iterated decomposition scheme. In this paper, we put forward a simple yet effective method to learn EMD from data by means of morphological operators. We propose an end-to-end framework by incorporating morphological EMD operators into deeply learned representations, trained using standard backpropagation principle and gradient descent-based optimization algorithms. Three generalizations of morphological EMD are proposed: a) by varying the family of structuring functions, b) by varying the pair of morphological operators used to calculate the envelopes, and c) the use of a convex sum of envelopes instead of the classical mean point used in classical EMD. We discuss in particular the invariances that are induced by the morphological EMD representation. Experimental results on supervised classification of hyperspectral images by 1D convolutional networks demonstrate the interest of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.